Provisionally accepted for publication

CASE REPORT

Isolated markedly elevated maternal alkaline phosphatase in the third trimester: a

potential marker of placental dysfunction and low birth weight

Isolated elevated ALP in pregnancy and placental dysfunction

Maria Giovanna Salerno, Ottavia D'Oria *

Obstetrics and Gynecological Unit, Department of Woman's and Child's Health, San

Camillo-Forlanini Hospital, Rome, Italy.

*Corresponding author: Ottavia D'Oria, Obstetrics and Gynaecological Unit, Department

of Woman's and Child's Health, San Camillo-Forlanini Hospital, Cir.ne Gianicolense 87,

00152 Rome, Italy.

E-mail: ottavia.doria@uniroma1.it.

ORCID: 0000-0002-3482-1523.

Doi: 10.36129/jog.2025.247

ABSTRACT

Background. Alkaline phosphatase (ALP) levels physiologically increase in pregnancy,

primarily due to placental production. However, abnormally elevated ALP levels may be

correlated with placental dysfunction and adverse birth outcomes.

Case Presentation. We report the case of a 36-year-old nulliparous woman with no

significant medical history, who presented with isolated elevated ALP levels from 30 weeks

of gestation, reaching a peak of 3173 U/L at 37 weeks. Other hepatic parameters and bile

acids remained within normal ranges throughout pregnancy. Serial foetal growth

assessments revealed a progressive reduction of percentile, with estimated foetal weight at

the 12th percentile near term. Labor was induced at 39 weeks and 2 days due to foetal

growth restriction. A female neonate weighing 2680 g (approximately 10th percentile) was

delivered vaginally. Histopathological analysis of the placenta revealed third-trimester villous

maturity with signs of hypoxic-ischemic damage and extensive intervillous fibrin deposits.

Conclusions. This case supports the hypothesis that isolated markedly elevated ALP levels

in late pregnancy may be a marker of subclinical placental dysfunction and foetal growth

1

restriction. In the absence of cholestasis or hepatic pathology, elevated ALP should prompt close foetal monitoring and placental evaluation.

Key words

Alkaline phosphatase; obstetrics outcomes; placental insufficiency; fatal growth restriction; low birth weight.

Introduction

Alkaline phosphatase (ALP) increases physiologically during pregnancy, mainly in the third trimester, due to placental and bone contributions [1]. While this elevation is typically benign, extreme or rising levels may signal pathological conditions. Existing literature offers mixed evidence on the association between ALP and adverse birth outcomes (ABO), such as small-for-gestational-age (SGA) infants, preterm birth (PTB), or placental insufficiency [2–4]. This case report aims to contribute to this limited body of evidence by presenting a case of isolated and markedly elevated maternal ALP levels in late pregnancy, and to explore its potential association with placental histopathological abnormalities and reduced birth weight.

Case Presentation

A 36-year-old gravida 1, para 0 woman without comorbidities was followed during her pregnancy. Her routine labs were unremarkable until 30 weeks, when ALP rose to 380 U/L. This elevation progressed despite normal liver function and bile acid levels, peaking at 3173 U/L at 37 weeks. No cholestasis or bone pathology was found. Serial ultrasound assessments showed amniotic fluid at the lower end of normal and decreasing foetal growth percentiles (down to the 12th percentile). The patient was admitted for induction at 39 weeks and 2 days. Labor was initiated with dinoprostone and complicated by uterine tachysystole, managed with atosiban. She delivered a 2680 g female baby with Apgar scores of 8 and 9

at 1 and 5 minutes, respectively. The placenta, weighing 353 g, showed signs of chronic hypoxic-ischemic injury with fibrin deposition.

Discussion

This case adds to the developing evidence suggesting that isolated ALP elevation in late pregnancy may reveal subclinical placental pathology. Alkaline phosphatase is a hydrolase enzyme present in multiple tissues, including liver, bone, bowel, kidney, and placenta. During pregnancy, the predominant form circulating in maternal serum is the placental isoenzyme, synthesized by the syncytiotrophoblast [1,3]. Although physiologic increases in ALP are expected as gestation progresses, reaching two to three times the upper limit of normal, marked or disproportionately rising levels, in the absence of hepatic or skeletal pathology, may signal abnormal placental function or integrity [5,6]. While the large cohort study by Zhang et al. paradoxically associated higher ALP levels with opposite perinatal outcomes, including higher birth weight and reduced risks of preterm birth and SGA, other data, according to our findings, suggest that extremely elevated ALP may indicate incipient placental insufficiency [2]. McErlean et al. described a similar case of significantly raised ALP in the third trimester associated with intrauterine growth restriction (IUGR) and Fetal Doppler abnormalities suggestive of uteroplacental insufficiency [7]. In addition to these reports, more recent literature provides further insight into the heterogeneous implications of markedly elevated ALP levels in pregnancy. Stanley et al. described a case with a 30-fold increase of placental ALP, yet with an uncomplicated term delivery and no evidence of placental pathology, underscoring that extreme elevations do not invariably predict adverse outcomes [6]. Conversely, Wilkof-Segev et al., in the largest available case series (21 pregnancies), reported that ALP levels exceeding 1000 U/L were frequently associated with complications such as gestational diabetes, hypertensive

disorders, preterm birth, and, in some cases, placental vasculopathy or inflammation [3].

Similar associations between excessive placental ALP secretion and hypoxic-ischemic placental injury had also been noted in earlier observational studies [8,9].

Placental ALP originates predominantly from syncytiotrophoblast membranes, where it plays a role in nutrient transport and placental barrier function. Its levels increase progressively throughout gestation, reflecting placental growth and villous maturation. However, excessive or disproportionate elevations may reflect pathological processes. In particular, intervillous fibrin deposition, as identified in our case, is consistent with chronic hypoxic-ischemic injury and may disrupt the syncytiotrophoblastic surface, leading to increased ALP release into the maternal circulation. This mechanistic link supports the hypothesis that markedly elevated ALP can serve as a biochemical marker of occult placental dysfunction.

This apparent contradiction may be explained by the heterogeneity of ALP isoenzymes and their differential expression in response to physiologic versus pathologic inducements. Indeed, while some elevations may result from enhanced syncytiotrophoblastic activity during normal placental maturation, others may reflect cellular stress or injury, leading to ALP outflow into maternal circulation. The divergence in clinical outcomes likely reflects differences in isoenzyme predominance, maternal comorbidities, and placental resilience. In our case, the extreme elevation of ALP was not complemented by liver enzyme abnormalities, cholestasis, or bone disease, supporting a placental origin. The histological examination of the placenta confirmed third-trimester villous maturity but also revealed extensive intervillous fibrin deposition, consistent with chronic hypoxic-ischemic injury. This aligns with other reports that identified histological evidence of vascular malperfusion or fibrin deposition in association with disproportionate ALP elevations [3,5]. These findings underscore the potential role of ALP as a non-invasive biochemical marker of occult placental dysfunction, even in the absence of explicit clinical signs such as preeclampsia or cholestasis.

Altogether, these observations support the notion that isolated and disproportionate ALP elevation in late pregnancy should not be dismissed as benign but rather considered as a potential early marker of placental maladaptation. Future investigations should also explore standardized thresholds for clinical alarms and assess whether serial ALP monitoring could serve as an adjunct tool in the early detection of placental insufficiency.

Conclusions

Severe isolated ALP elevation in the absence of other liver abnormalities may be an early sign of placental dysfunction. In such cases, enhanced surveillance, including Doppler studies and growth monitoring, should be considered. Further research is warranted to define ALP thresholds and isoenzyme profiles associated with adverse outcomes.

COMPLIANCE WITH ETHICAL STANDARDS

Authors' contribution

Conception and project administration: M.G.S. Methodology and data collection: O.D. Investigation and data curation: O.D. Visualization, writing – original draft and writing – review & editing: O.D. and M.G.S. Supervision: M.G.S. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Funding

Not applicable.

Study registration

Not applicable.

Disclosure of Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Informed consent

The patient signed an informed consent to publish her data anonymously.

Data sharing

Not applicable.

References

- [1] Connolly CT, Grubman O, Al-Ibraheemi Z, Kushner T. A Case of Markedly Elevated Isolated Alkaline Phosphatase in the Third Trimester of Pregnancy. Case Rep Obstet Gynecol 2022;2022:1611304. https://doi.org/10.1155/2022/1611304.
- [2] Zhang B, Zhan Z, Xi S, Zhang Y, Yuan X. Alkaline phosphatase of late pregnancy promotes the prediction of adverse birth outcomes. J Glob Health 2025;15:04028. https://doi.org/10.7189/jogh.15.04028.
- [3] Wilkof-Segev R, Hallak M, Gabbay-Benziv R. Extremely high levels of alkaline phosphatase and pregnancy outcome: case series and review of the literature. J Perinat Med 2021;49:191–4. https://doi.org/10.1515/jpm-2020-0205.
- [4] Liu Y, Hou W, Meng X, Zhao W, Pan J, Tang J, et al. Early elevated alkaline phosphatase increases the risk of large-for-gestational-age birth weight in pregnant women with normal glucose tolerance. Diabetes Res Clin Pract 2018;141:209–16. https://doi.org/10.1016/j.diabres.2018.04.024.
- [5] Ferro B, Marques I, Paixão J, Almeida M do C. Incidental Finding of Extreme Elevation of Serum Alkaline Phosphatase in Pregnancy. Cureus 2021;13:e17211. https://doi.org/10.7759/cureus.17211.
- [6] Stanley Z, Vignes K, Marcum M. Extreme elevations of alkaline phosphatase in pregnancy: A case report. Case Rep Womens Health 2020;27:e00214. https://doi.org/10.1016/j.crwh.2020.e00214.
- [7] McErlean S, King C. Does an abnormally elevated maternal alkaline phosphatase pose problems for the fetus? BMJ Case Rep 2019;12:e229109. https://doi.org/10.1136/bcr-2018-229109.
- [8] Vongthavaravat V, Nurnberger MM, Balodimos N, Blanchette H, Koff RS. Isolated elevation of serum alkaline phosphatase level in an uncomplicated pregnancy: a case report. Am J Obstet Gynecol 2000;183:505–6. https://doi.org/10.1067/mob.2000.105841.
- [9] Heazell AEP, Judge JK, Bhatti NR. A case of isolated peripartum elevation of alkaline phosphatase in pregnancy complicated by gestational diabetes. J Matern Fetal Neonatal Med 2006;19:311–3. https://doi.org/10.1080/14767050600676273.