ORIGINAL ARTICLE

The Capacity of RDW and Platelet indices in defining Pre-eclampsia severity: A cases-control study

Running Title Pre-eclampsia and Red cell distribution width

Wassan Nori 1*, Zina Abdullah Hussein 1, Alea farhan Salman 2, Ban H. Hameed 1

Doi: 10.36129/jog.2022.73

1. Department of Obstetrics and Gynecology, College of Medicine, Mustansiriyah University, Baghdad, Iraq
2. National central of Hematology, Mustansiriyah University, Baghdad, Iraq

* Corresponding Author: Nori W, M.D, Assistant Prof. Department of Obstetrics and Gynecology
Department of Obstetrics and Gynecology, Mustansiriyah University, Baghdad, Iraq
E-mail: Dr.wassan76@uomustansiriyah.edu.iq
Mobile: +9647831889034 postcode 10052
orcid (0000-0002-8749-2444)

ORCID
1. Wassan Nori (0000-0002-8749-2444)
2. Zina Abdullah Hussein (0000-0002-0446-1686)
3. Alea Farhan Salman (0000-0002-4653-9816)
4. Ban H. Hameed (0000-0001-8451-652x)

Article info
Word counts 2200
Tables 4
Figures 2
References 31
Abstract

Objective. Pre-eclampsia (PE) is a peculiar pregnancy complication with adverse feto-maternal outcomes. Red blood cell distribution width (RDW) and platelet indices are complete blood count parameters; tested as a marker for cardiovascular diseases. The inflammatory theory was proposed for PE etiology; therefore, we aimed to investigate the role of RDW and platelet parameters in determining pre-eclampsia severity.

Patients and methods. At Al-Yarmouk Hospital, we conducted a case-control study. 120 pregnant women satisfied inclusion criteria, divided into two groups. According to American guidelines, PE cases (60/120) and healthy controls (60/120). PE cases were subdivided into severe PE (34/60) and non-severe PE (26/60) cases. A blood sample was aspirated for complete blood count, including RDW, mean platelet volume (MPV), and platelet distribution width (PDW).

Results. RDW and MPV were meaningfully higher in PE cases than controls, with a P-value of 0.003 and 0.004, respectively. A significant difference was found in the RDW and PDW in subgroups analysis of severe vs. non-severe PE cases, with P-values of 0.001 and 0.037, respectively. Only RDW was significantly correlated with systolic BP; r = 0.47. and diastolic BP; r = 0.399. At a cutoff value of > 15.6%, RDW showed 56.7 %sensitivity and 95.8 % specificity, P < 0.001, distinguishing severe from non-severe PE pregnancies.

Conclusions. RDW discriminated PE severity with good accuracy and preceded platelets indices, implying its validity as a marker of severe PE. RDW is a simple, inexpensive test available in antenatal care services. Accurate diagnosis permits early focused treatment, vigorous monitoring, and timely interventions for improving pregnancy outcomes.

Keywords: Blood indices, Pre-eclampsia, severity, Red cell distribution width.

INTRODUCTION

Pre-eclampsia is a serious pregnancy-specific syndrome. It almost always causes adverse effects for the pregnant and her unborn neonate. [1]. PE is defined by the development of hypertension beyond 20 weeks of gestation in pregnant who previously did not have hypertension with or without albuminuria or hypertension that causes end organ failure [2].

Preeclampsia has two stages. The first stage starts when a defect in trophoblast implantation causes hypoxia and less blood flow to the uterine arteries, which leads to early-onset PE(less than 34weeks). When PE becomes symptomatic, the second stage begins in response to oxidative stress and placental factors released into maternal blood; the latter will trigger inflammatory cells and immunologic reactions to produce a systemic inflammatory state. This is evident by alterations in the values of blood parameters and many inflammatory indicators [2,3]. Ultimately, these indicators cause endothelial dysfunction and damage, which is the whole mark of PE [4].
Although diagnostic criteria for both PE sub-types are the same, early onset PE carries a higher risk of adverse outcomes for both the mother and unborn fetus. In contrast, late-onset PE has a less severe course. This disparity in pathogenesis underlies the heterogeneity of PE syndrome[5]. Despite significant fieldwork, no definite cause has been found. Pre-eclampsia was hypothesized to be multifactorial in etiology; genetic, immunological, and inflammation are all proposed risk factors. Many blood indices were examined and proved to be valuable in predicting and evaluating PE severity[6].

Red cell distribution width (RDW) is a measurement of red blood cell size diversity and is included in most complete blood counts. RDW has been used to determine the cause of anemia, such as iron deficiency anemia and sickle cell anemia [7,8]. Some suggest it as a predictor and prognostic biomarker for high cardiovascular events [9]. Inflammation, oxidative stress, and metabolic syndrome have all been linked to increased RDW. However, the reasons for the increased RDW are unknown [10].

Platelets, on the other hand, play a substantial pathophysiological role in PE. Their count appears to diminish in pregnancies complicated by severe pre-eclampsia, yet there are conflicting reports regarding the mean platelet volume (MPV) and platelet distribution width (PDW)[4,11].

Some reports discuss that platelet indices change with the severity of PE as well as gestational age, while others deny such association [12].

A wide diversity of mechanisms that underlie PE pathophysiology has urged us to examine the usefulness of combined blood biomarkers in PE to enhance their performance. In addition, many inconsistencies are reported in the published literature regarding the value of blood indices[13].

This study examined the value of RDW and platelet parameters as possible diagnostic markers of PE severity among patients with late-onset PE, and since pre-eclampsia severity is the most detrimental to maternal and fetal outcomes, we aimed to reduce the PE health burden and improve its prognosis.

PATIENTS AND METHOD

A case-control study was conducted in the Obstetrics department at Al Yarmouk hospital in Baghdad for one year, from January 2021 to January 2022. Informed consent was taken from all participants in the study that the ethical committee approved of Mustansiriyah University/ College of Medicine (IRB /146 on the 23rd NOV 2020).

A total of 120 women satisfied our inclusion criteria grouped into PE cases (60/120) comprised of pregnant diagnosed with pre-eclampsia and (60/120) healthy women as a control group. Both groups were matched regarding age, gestational age, and body mass index (BMI). PE cases were further subdivided into severe PE (34/60) and non-severe PE (26/60) cases.

Inclusion criteria

1. pregnant in their 34-36 weeks, gestational age was confirmed by early pregnancy dating ultrasound and /or reliable last menstrual periods dates.
2. Maternal age range included was 20-40 years for both groups, with BMI <30 Kg/m²
3. Singleton pregnancy

Exclusion criteria

1. Multiple pregnancies, congenital fetal anomaly
2. Pregnant with anemia, blood dyscrasia, and medical diseases, including infectious, endocrine, inflammatory, and chronic diseases.
3. Pregnant with uncertain dates, smokers, and those with BMI exceeding thirty were excluded.
4. Pregnant who were already on anti-hypertensive drugs or taking drugs like aspirin and steroids.
5. Pregnant with incomplete or missing data.

The study flow chart Figure 1 highlighted the recruitment, inclusion, and exclusion criteria.

Study parameters and workflow

Pre-eclampsia was defined based on the American College guidelines and involved cases admitted to the hospital and fulfilled the diagnostic criteria of pre-eclampsia, blood pressure equal to or over 140/90 mm/Hg on two occasions six hours apart with proteinuria 300mg/dl or more per day. Features of severe PE include blood pressure >=160/110 mmHg, accompanied by one or more of proteinuria ≥ 500 mg per day, oliguria less than 500 ml per 24 h, impaired hepatic function, pulmonary edema or cyanosis, epigastric or right-upper abdominal pain, cerebral or visual disturbance, and fetal growth restriction, and thrombocytopenia [1,14].

The control group included 60 women who were normotensive pregnant ladies randomly selected based on hospital records; we chose even serial numbers from those who attended the hospital for routine antenatal visits.

Besides a detailed clinical history, all participants had a general and obstetrical physical examination. The blood pressure was measured using a mercurial sphygmomanometer for the women resting in the sitting or lateral lying position over the cubital fossa and repeated to confirm the diagnosis if seen as abnormal.

Participants were subjected to laboratory analysis, including general urine examination for protein urea and complete blood count, including [Red blood cells, hematocrit, hemoglobin, RDW, MPV, and PDW], biochemical markers, including renal and liver function tests. The above data were collected and analyzed.

The sample size calculation

Based on the prevalence rate of PE, which is 5-10% [2], corresponding with a 95% confidence level and 5% deviation from the population, it was estimated to be 60 patients as a case group [15] with reasonable controls.

Statistical analysis:

Data have been expressed as means ± standard deviation, and a student t-test was used to analyze the difference between the two groups. One-way ANOVA tested the
difference in hematological parameters pre-eclampsia sub-groups; is between severe vs. non-severe PE cases. Pearson correlation assessed the strength of association between RDW, PDW, and MPV as an independent variable against systolic and diastolic blood pressure in PE sub-groups to estimate their relation to the degree of PE severity.

The ROC (receiver operator characteristic) Curve determined the cutoff value for red cell distribution width that distinguished severe from non-severe PE cases with its respective sensitivity, specificity, and AUC. P-value was significant when less than 0.05.

RESULTS:

The analysis included 120 pregnant grouped into two groups PE cases and healthy controls. The maternal age(26.43±7.10 vs. 29.03±4.97)years and BMI(28.4±2.13 vs. 27.7±3.99)Kg/m² was statistically insignificant among the two, with P-value of 0.106 and 0.57 respectively.

The **clinical and biochemical parameters** of the studied groups are clarified in **Table 1**; the systolic, diastolic blood pressure, blood urea, aspartate aminotransferase, and protein urea were significantly higher in PE cases versus healthy controls. In contrast, maternal age, gestational age, serum creatinine, total bilirubin, and alanine aminotransferase showed non-significant differences between the two groups.

The **hematological variables** of the studied groups showed a significantly raised RDW in PE cases versus control (15.21±2.08% versus 13.86±1.07%), P-value of 0.003. likewise, mean platelet volume MPV was higher in PE cases than control group (10.71±1.17 versus 9.87 ±0.96) fl, P-value 0.004. Other hematological variables were statistically insignificant, namely RBC, Hematocrit HCT, hemoglobin, platelet counts, and platelet distribution width PDW. These results are clarified in **Table 2**.

Table 3 highlighted subgroups analysis of PE cases based on PE severity; it was shown that out of 60 PE cases; (26/60) were diagnosed with non-severe PE, and (34/60) were diagnosed with severe PE. A significant difference was found in the RBC, RDW, and PDW with P-values of 0.000,0.001, and 0.037, respectively, while MPV failed to have a statistical value with P>2.255.

Table 4 Pearson correlation was constructed to highlight the strength of association of blood parameters to the severity of late-onset PE; only RDW was correlated with systolic BP; r = 0.47, P=0.0003 and diastolic BP; r =0.399, P=0.003, both PDW and MPV were statistically insignificant.

Figure 2 clarifies the diagnostic value of RDW in determining the degree of severity of PE among affected women. The RDW cutoffs value (>15.6%) showed 56.7%,95.8% sensitivity, and specificity, respectively, in distinguishing non-severe from severe PE cases with a reliable AUC of 0.742.

DISCUSSION

The RDW and MPV were significantly higher in PE cases than in healthy controls. PDW and RDW were significantly higher in subgroups analysis of PE cases, and only RDW was correlated to PE severity. The RDW cutoff value linked with PE severity; was (> 15.6), associated with good sensitivity and specificity. The AUC was 0.7, implying a strong predicting marker.
Pre-eclampsia represents one of the critical causes of perinatal morbidities and mortalities, with the termination of gestation as the definitive treatment. Thus, an accurate and feasible severity assessment strategy will reduce the disease burden, which can be accomplished by early preventive strategies, close antenatal surveillance, and prophylactic interventions. Currently, the combination of anamnestic, anthropometric, biophysical, and maternal biochemical variables is the most recommended screening method [16].

Yücel et al. study investigated the value of MPV in identifying the severity of pre-eclampsia, and in concordance with our results, MPV levels were considerably higher in individuals with PE than in controls [17]. MPV was heavily examined in PE cases; some linked them to PE onset while others associated them with PE severity [18,19]. Another study looked into MPV's role in severe PE as a predictor for growth-retarded infants. Both MPV and PDW were strongly correlated with Doppler indices. However, PDW and not MPV predicted growth restriction with an odds ratio of 16, (95% CI:161.8,143.12), P-value =0.01 [4]. Some researchers discussed that PDW is a more sensitive marker for PE severity than MPV [20].

The platelets undergo consumption once pre-eclampsia begins, and their number decline in response; the bone marrow will produce newer platelets to replace them. However, newer platelets tend to be bigger, which is why platelet indices are altered in PE patients [4,20,21].

In good agreement with our results, Kurt et al. confirmed that RDW distinguished pre-eclampsia severity among subgroups with and without PE; their study linked inflammatory parameters (total WBC, RDW, and C-reactive protein) in two research subgroups with and without PE [22]. Conversely, Yücel et al. and Gogoi et al. discussed significantly higher RDW in severe PE patients; they recommended it as a predictor marker for PE onset and did not link RDW to severity owing to the disparity in the number of severe and non-severe cases, which may have hindered their results in Yücel et al. and small sized sample in Gogoi et al. study [17,18]. Interestingly, Abdullahi’s study had contradicting outcomes; RDW values were not linked with the onset nor severity of pre-eclampsia [23].

The link between RDW and the risk of having hypertension was explored by Seo et al. outside the pregnancy context. They recruited 124,260 healthy participants (both genders) in a retrospective cohort model and tracked them for eleven years. Incorporating RDW in the prediction equation improved the 95 percent confidence interval, P<0.001. Furthermore, RDW had a strong and independent correlation with the development of hypertension [24].

The particular mechanism underlying a high RDW level in PE; is not yet entirely known. However, it may be a reflection of increased inflammation [22]. Inflammatory cytokines may disrupt iron metabolism, hence shortening the lifespan of red blood cells and raising RDW values [25]. The increased RDW with other inflammatory indicators, C-reactive protein, is in good agreement with our hypothesis [26].

Oxidative stress, on the other hand, may have a role in anisocytosis and elevated RDW [27]. Both inflammatory process and oxidative stress are characteristics of pre-
eclampsia, which may explain the higher levels of RDW in severe pre-eclampsia [1,2,4].

Riise et al. have discussed the risk ratio for maternal cardiovascular diseases (CVD) after premature PE to be raised five-fold; conversely, the risk is ten folds higher should PE occur before 34 weeks [28].

The real challenge in obstetric medicine is to find a biomarker, or even better, a panel of biomarkers, for an early diagnosis of pre-eclampsia onset and severity aiming to mitigate adverse feto-maternal outcomes, not to mention reducing the prospective maternal risk of CVD [29,30].

Platelets indices (MPV and PDW) are already validated markers of PE, and the RDW has outstood them both, showing a significantly higher value in PE women; RDW constantly stayed significant in sub-groups and correlation analysis. In addition to its good accuracy in distinguishing the severity of PE with good sensitivity and specificity, which makes RDW is a reliable marker for assessing the severity of late-onset PE.

Study limitation late-onset PE is suggested to be dependent on maternal risk factors [3,31]; the current study did not tack into account the fetus's gender (male sex increases Late onset PE risk) or maternal ethnicity; our community is a mixture of more than one ethnicity which was not addressed in sampling. Another limitation is being a single-center study which may decrease the sample population's diversity and range. Since our hospital is a tertiary referral center, it receives hundreds of cases alongside referral cases, so we think that patient diversity was accomplished. Lastly, the study design is another limitation; being observational rather than interventional in addition to being un-useful in studying rare diseases [32].

Study strengths: None of the earlier studies scored such reasonable specificity with RDW or other blood parameters in the evaluation of PE severity; in fact, many inconsistencies exist in the literature. A possible explanation is that these studies recruited participants of different gestational ages and inclusion criteria. In addition, they did not consider factors that influence RDW estimation, including anemia's state, serum ferritin, and iron, which could explain the disparity in results [33-35].

The current study has endorsed strict inclusion criteria and careful sampling since it's a single-center study.

CONCLUSION

The study concludes that RDW is correlated with PE severity with good specificity and sensitivity. It preceded both MPV and PDW with an area under the curve of 0.7, indicating its reliability. RDW is a simple, inexpensive test readily available in antenatal care services which permits early diagnosis, focused treatment, vigorous monitoring, and possible preventive measures for improving pregnancies outcome.

COMPLIANCE WITH ETHICAL STANDARDS

Authors contribution
WN: study design, conception, manuscript preparation and drafting, ZAH: a literature review. AFS: Data collection, literature review. BHH :manuscript preparation, statistical analysis.

Funding None.

Study registration N/A

Disclosure of interests

all authors declare; that we do not have a conflict of interest.

Ethical approval

the ethical committee of Mustansiriyah University/ College of Medicine approved the study (IRB /146 on the 23rd NOV 2020). The study followed the Helsinki declaration, and all study methods were done under the Helsinki tent and comparable medical standards.

Informed consent

all pregnant women in the current study gave informed consent prior to enrollment.

Data Sharing

All data are available upon reasonable requests to the corresponding author

References:

Table 1: The clinical and biochemical parameters for pre-eclampsia cases and healthy controls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Study group (n=60)</th>
<th>Control group (n=60)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gestation weeks</td>
<td>Systolic BP (mmHg)</td>
<td>Diastolic BP (mmHg)</td>
</tr>
<tr>
<td></td>
<td>34.13±2.6</td>
<td>163±7.85</td>
<td>105±9.59</td>
</tr>
<tr>
<td></td>
<td>35.31±1.9</td>
<td>115±6.1</td>
<td>80±6.1</td>
</tr>
</tbody>
</table>

* Significant at 0.05

Table 2: The study’s hematological parameters for pre-eclampsia cases and healthy controls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Study group (n=60)</th>
<th>Control group (n=60)</th>
<th>Significance</th>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (10^6/UL)</td>
<td>4.41±0.48</td>
<td>4.22±0.48</td>
<td>0.059</td>
<td>RBC: Red blood cells</td>
</tr>
<tr>
<td>HCT (%)</td>
<td>35.66±3.92</td>
<td>35.15±2.67</td>
<td>0.56</td>
<td>HCT: Hematocrit</td>
</tr>
<tr>
<td>HB (g/dl)</td>
<td>11.79±1.42</td>
<td>12.01±1.13</td>
<td>0.51</td>
<td>HB: Hemoglobin</td>
</tr>
<tr>
<td>RDW (%)</td>
<td>15.21±2.08</td>
<td>13.86±1.07</td>
<td>0.003*</td>
<td>RDW: Red cell distribution width</td>
</tr>
<tr>
<td>Platelets (10^3/UL)</td>
<td>223.90±93.63</td>
<td>248.40±52.55</td>
<td>0.216</td>
<td>Platelets</td>
</tr>
<tr>
<td>MPV (fL)</td>
<td>10.71±1.17</td>
<td>9.87±0.96</td>
<td>0.004*</td>
<td>MPV: Mean platelet volume</td>
</tr>
<tr>
<td>PDW (fL)</td>
<td>14.68±3.02</td>
<td>13.05±2.12</td>
<td>0.19</td>
<td>PDW: Platelet distribution width</td>
</tr>
</tbody>
</table>

*significant at 0.05; all data are presented as means ±standard deviations (M±SD)

Table 3: ANOVA sub-groups analysis for the study’s hematological parameters for severe (N=34/60) and non-severe (N=26/60) pre-eclampsia cases.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RBC $(10^6/UL)$</th>
<th>HCT (%)</th>
<th>HB (g/dl)</th>
<th>RDW (%)</th>
<th>Platelets $(10^3/UL)$</th>
<th>MPV (fL)</th>
<th>PDW (fL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe PE cases (n=34)</td>
<td>4.41±0.48</td>
<td>35.66±3.92</td>
<td>11.79±1.42</td>
<td>15.21±2.08</td>
<td>223.90±93.63</td>
<td>10.71±1.17</td>
<td>14.68±3.02</td>
</tr>
<tr>
<td>Non-severe PE cases (n=26)</td>
<td>4.22±0.48</td>
<td>35.15±2.67</td>
<td>12.01±1.13</td>
<td>13.86±1.07</td>
<td>248.40±52.55</td>
<td>9.87±0.96</td>
<td>13.05±2.12</td>
</tr>
<tr>
<td>Significance</td>
<td>0.059</td>
<td>0.56</td>
<td>0.51</td>
<td>0.003*</td>
<td>0.216</td>
<td>0.004*</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*significant at 0.05. All data are presented as means ± standard deviations (M±SD)

Table 4: Pearson correlation coefficient showing the correlation between RDW, MPV and PDW as an independent variable with systolic and diastolic blood pressure taken as dependent variables among non-severe (26/60) and severe (34/60) PE cases.

<table>
<thead>
<tr>
<th>Maternal RDW</th>
<th>Correlation Coefficient (r)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP (mmHg)</td>
<td>0.47</td>
<td>0.0003*</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>0.399</td>
<td>0.003*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maternal MPV</th>
<th>Correlation Coefficient (r)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP (mmHg)</td>
<td>0.099</td>
<td>0.52</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>0.007</td>
<td>0.962</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maternal PDW</th>
<th>Correlation Coefficient (r)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP (mmHg)</td>
<td>0.168</td>
<td>0.23</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>0.185</td>
<td>0.181</td>
</tr>
</tbody>
</table>

BP blood pressure RDW: Red cell distribution width, MPV: Mean platelet volume, PDW: Platelet distribution width. *Significant at 0.05.
Table 5: Highlighting the summary of findings and conclusion of the study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Groups</th>
<th>t-test</th>
<th>P-value</th>
<th>Pearson Correlation for SBP and DBP</th>
<th>P-value</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red distribution width</td>
<td>Severe PE</td>
<td>15.21±2.08</td>
<td>0.003*</td>
<td>0.47</td>
<td>0.0003*</td>
<td>At>15.6% RDW had 95% specificity for severe PE</td>
</tr>
<tr>
<td></td>
<td>Non severe PE</td>
<td>13.86±1.07</td>
<td>0.399</td>
<td>0.19</td>
<td>0.003*</td>
<td></td>
</tr>
<tr>
<td>Platelets distribution width</td>
<td>Severe PE</td>
<td>14.68±3.02</td>
<td>0.168</td>
<td>0.19</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non severe PE</td>
<td>13.05±2.12</td>
<td>0.185</td>
<td>0.181</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Mean platelet volume</td>
<td>Severe PE</td>
<td>10.71±1.17</td>
<td>0.099</td>
<td>0.019</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non severe PE</td>
<td>9.87±0.96</td>
<td>0.004*</td>
<td>0.007</td>
<td>0.962</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: Only the RDW constantly stayed significant in t-test and correlation analysis. In addition to its good accuracy in ROC in distinguishing the severity of PE with P<0.001 and reliable AUC (0.742).

PE: preeclampsia, SBP: systolic blood pressure, DBP: diastolic blood pressure, *Indicate statistically significant

Figure 1 Study flow chart with main results highlighted.
146 pregnant were enrolled at 34-36 weeks of a singleton pregnancy

Detailed history, general and obstetrical examinations were conducted.

A total of 120 pregnant were analyzed:
- 60/120 cases were assigned as study group who fulfilled the diagnosis of PE, further subdivided into severe PE (34/60) and non-severe PE (26/60) cases.
- 60/120 cases were assigned as healthy controls.

Laboratory investigation was done, including urine for albumin, complete blood picture, and biochemical tests.

Severe preeclampsia, n=34
- RDW = 16.14 ± 2.16
- PDW = 14.04 ± 3.15

Non-severe preeclampsia, n=26
- RDW = 14.37 ± 1.93
- PDW = 13.54 ± 1.59

Only RDW correlated with Preeclampsia severity:
- $r = 0.0003; r = 0.003$ for SBP, DBP respectively
- RDW at $>15.6\%$, specificity of 95.8%, AUC=0.742 and $P<0.001$

Figure 2 The ROC curve estimated the RDW cutoff value that distinguishes severe vs. non-severe PE cases with the highest sensitivity and specificity.