Convalescent plasma use in pregnant patients with COVID-19 related ARDS: a case report and literature review

Giuseppe Gullo 1, Gaspare Cucinella 1, Mario Tumminello 2, Baldassare Renda 3, Massimo Donzelli 3, Vincenzo Lo Bue 1, Donatella Termini 3, Marianna Maranto 1, Orazio De Tommasi 4*, Francesco Tarantino 3

1 Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, Palermo, Italy.
2 Department of Pediatrics, Villa Sofia Cervello Hospital, Palermo, Italy.
3 Department of Anesthesia and Intensive Care II, Villa Sofia Cervello Hospital, Palermo, Italy.
4 Department of Women’s and Children’s Health, Gynaecologic and Obstetrics Clinic, University of Padua, Padua, Italy.

ARTICLE INFO

History
Received: 08 March 2022
Received in revised form: 26 March 2022
Accepted: 13 April 2022
Available online: 12 September 2022
DOI: 10.36129/jog.2022.32

Key words
Convalescent plasma; COVID19; interstitial pneumonia; pregnancy; preterm cesarean section.

*Corresponding author: Orazio De Tommasi, M.D. Department of Women’s and Children’s Health, Gynaecologic and Obstetrics Clinic, University of Padua, via Giustiniani, 3, 35128 Padua, Italy.
Email: odetommasi@gmail.com.
ORCID: 0000-0001-5890-9792.

INTRODUCTION

The Covid-19 pandemic from December 2019 until February 2022, has caused about 5.7 million deaths, with more than 400 million documented infections worldwide [1].

The infection is determined by the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through a human-to-human contact via respiratory droplets [2]; the course of the disease in some patients is characterized by a progression to acute respiratory distress syndrome...
(ARDS) leading to a poor prognosis in several of them [3, 4]. In pregnant women a higher incidence of abortion, growth restriction, preterm births and fetal death are documented as well as a higher risk of admission to the intensive care unit (ICU) and mechanical ventilation [5, 6] with a significant psychological impact on patients [7, 8]. Convalescent plasma (CP) has been mentioned as one of the most promising therapeutic strategies for SARS-CoV-2 infection, while recent evidences have shown a poor association of CP with better clinical outcomes [9]. Pregnant women have been mostly excluded from clinical trials (except for few exceptions [10]); nevertheless, most of reports developed about the issue seem to support the beneficial maternal and fetal effects of CP as well as the safety of this treatment [11].

All the cases about pregnant women suffering from severe ARDS due to SARS-CoV-2 infection and treated with CP show maternal survival. In most of cases preterm cesarean sections has been needed [12-14] but in many cases normal ongoing of the pregnancy has been registered [15-17]. Just few cases showed intrauterine neonatal death as a consequence of the complicated maternal clinical picture [18,19].

Italy was the first western country hit by the Virus in March 2020 [20]. In this study, we present a case of a pregnant woman treated with CP, the first case registered in Sicily. The clinical case at issue has already been treated in another paper [21]. With the present work we go into detail of the obstetric management of the patient and neonatal management.

COVID-19 is caused by SARS-CoV-2 and includes a several characterization, from asymptomatic patients to respiratory failure, cardiovascular, thromboembolic and inflammatory complications. Pregnancy does not appear to increase susceptibility to this infection, but physiological changes during pregnancy, such as reduced functional residual volumes, diaphragm elevation and altered cell immunity may be an increased risk for severe disease, maternal intensive care unit admission and mechanical ventilation [22, 23]. Deaths have been reported equally in pregnant as in non-pregnant women of reproductive age [24], but, compared to healthy pregnant women, those with COVID-19 have an increased risk of preterm and cesarean delivery due to fever and hypoxemia [25].

We report a case of a third trimester pregnant woman with severe acute respiratory syndrome from COVID-19, undergoing urgent preterm cesarean section.

CASE PRESENTATION

Clinical presentation

A 34-year-old multipara woman at 27 weeks and 4 days of gestation, came to the hospital with fever, dyspnea and abdominal pain, rapidly worsening without clinical improvements after paracetamol intake. No comorbidities were mentioned in her medical history. At admission, a fetal ultrasound showed a live fetus with regular biometry, no evaluation of the fetal anatomy was carried out. Physical examination showed decreased breath sounds to both lungs basis. Furthermore, arterial blood gases (ABG) showed: pH 7.439; PaCO₃ 33.6 mmHg; PaO₂ 38.9 mmHg; peripheral oxygen saturation (SpO₂) 70% in room air. Body temperature was 39.5 °C, blood pressure 125/70 mmHg, pulse rate 124 bpm. The patient had severe hypoxia and a P/F (PaO₂/FiO₂ ratio) of 64.4. The laboratory findings included a leukocyte count of 14 × 10³ µl, neutrophils of 12.15 × 10³ µl, lymphocytes of 1.22 × 10³ µl, C-reactive protein of 14.47 mg/dl, lactate dehydrogenase (LDH) of 445 UI/ml, hypokalemia with 2.9 mEq/L, D-dimer of 474 ng/ml (normal value in pregnancy). The other examinations were within normal limits. Molecular nasopharyngeal swab for SARS-Cov-2 was performed with a positive result.

Maternal management and completion of delivery

The patient was moved to a negative-pressure isolation room and O₂ flow was increased from initial 5 to 15 L/min and non-invasive ventilation (NIV) was attempted without improvement. So, she was moved to insensitive care unit (ICU) and a lung ultrasound showed thickening of the pleura and multiple irregular confluent pleural lines (B-lines) as from interstitial pneumonia. A high-flow nasal cannula oxygen therapy was attempted (FiO₂ between 80% and 90%; flow 60 lt/min; temperature at 31°C), but tachypnea persisted and the ABG worsened. Therefore, the patient was sedated and endotracheal intubation with invasive mechani-
cal ventilation was started. Venous thromboembolism prophylaxis with enoxaparin sodium and empiric antibiotic therapy with Clarithromycin and Ceftriaxone to prevent bacterial superinfection were begun. It was subsequently substituted by Vancomycin because *Staphylococcus aureus* was isolated by bronchoalveolar lavage (BAL) and by hemoculture. Prophylaxis for neonatal Respiratory Distress Syndrome (RDS) was performed. Serial ultrasound assessments of fetal growth, amniotic fluid volume and Doppler in the umbilical artery were performed because development of fetal growth restriction has been described with other SARS infections [26]. The second day the patient was placed in prone position [27, 28] due to the persistence of respiratory failure. Supports and pads beneath shoulders and hips were used to prevent aortocaval compression. The patient started a 12-hour daily cycle of pronation and a progressive improvement of oxygenation was registered, allowing a FiO₂ decrease. The patient underwent a total of four cycles of pronation, lasting 12 hours each. The last cycle was performed on the fourth day of hospitalization, with no more consistent changes in respiratory parameters. The third day, after ethic committee’s consent, a sack of CP was administered with improvement of clinical and laboratory findings. The next day a second sack of CP was administered without complications and with the increase of IgG and IgM in the following days. A chest radiography showed bilateral multiple ground-glass opacities confirming interstitial pneumonia. Lung ultrasounds were used for daily monitoring, to reduce the pregnant patient’s exposure to ionizing radiations [29]. The fifteenth day the antibiotic therapy was modified with the addition of Meropenem because BAL was positive for *Pseudomonas aeruginosa*. The next day the BAL resulted negative for SARS-CoV-2, but chest radiography showed an increase of the bilateral opacities and hypoxia and hypercapnia worsened. The eighteenth day of hospitalization, at 31 weeks and 1 day of gestation, venous thromboembolism prophylaxis was discontinued and a cesarean section under general anesthesia (patient was already intubate) was performed without complications. The next day after cesarean section a chest CT scan of the mother confirmed the bilateral ground-glass opacities and broncvascular interstice thickening, ascribable to ARDS. The patient first underwent non-invasive ventilation by BIPAP ventilation and then a percutaneous tracheostomy was done. Then, the clinical conditions and laboratory findings improved gradually. Patient developed cytomegalovirus infection with also ocular localization, successfully treated with Acyclovir. Finally in the twenty-fifth day of hospitalization, the patient breathed spontaneously, and lung ultrasound showed an improvement of findings, confirmed at the next chest CT. After two weeks, a maternal chest X-ray showed a resolution of infiltrates of both lung fields. Patient was discharged after a total length of stay of 43 days (Figure 1), in good general conditions, apyretic, without any respiratory symptom/sign.

Neonatal management

A preterm female infant weighing 1400 gr was born with APGAR 3-6-7 at one, five and ten minutes. After two ventilation cycles with FiO₂ increasing from 21 to 30%, due to the lack of effective respiratory ac-

Figure 1. Timeline of total length of stay.
tivity, the infant was intubated and connected to a ventilator in synchronous positive pressure ventilation (SIPPV) with the following parameters: PIP 22 cmH₂O, PEEP 5.5 cmH₂O, FiO₂ 0.30, breath frequency 45 acts/min, SpO₂ 96% and pulse rate 146 beats for minutes. Two hours after birth, chest X-ray and pulmonary ultrasound showed the prevalence of confluent B lines, therefore surfactant was administrated at 200 mg/kg. The baby was extubated 24 hours after birth and was placed in nasal continuous positive airway pressure (nCPAP) in ambient air. The newborn was undergone to swab and BAL for the detection of SARS-CoV2 with negative results at birth, 24 hours and 48 hours of life. The echocardiography showed the presence of bidirectional Botallo Arterial Duct, wide 3.5 mm, peri-membranous interventricular defect, large atrial foramen (3.5 mm), right ventricular chamber with normal contractility and slightly dilated pulmonary arterial trunk. The pulmonary bandaging was performed at 40 days of life. The child’s conditions during hospitalization were satisfactory, with good weight gain. The three serological tests performed showed IgM anti SARS-CoV2 negative and a decreasing of IgG values due to probable transplacental passage.

DISCUSSION

Majority of pregnant women experience only mild or moderate cold/flu-like symptoms, whereas shortness of breath, myalgia, sore throat and diarrhea are the less common symptoms [30]. Several studies revealed that pneumonia during pregnancy is associated with increased morbidity, mortality and obstetric complications with perinatal adverse outcomes especially due to changes in immune responses [31, 32]. The physiologic changes of pulmonary function during pregnancy are important to assess the severity of the disease and to guide ventilator FiO₂ parameters. Indeed, during pregnancy, maternal SpO₂ should be maintained greater than 95% and maternal PaO₂ greater than 70 mmHg is desirable to maintain a favorable oxygen diffusion gradient from the maternal to the fetal side of the placenta [33, 34]. When ARDS of any etiology occurs, prone positioning has proven beneficial effects on oxygenation and mortality [35]. Our data confirmed that pregnant women can be safely pronated, and this position improve clinical and blood gasses findings to relieve both diaphragmatic compression from abdominal contents and aortocaval compression from the gravid uterus [36]. The use of CP for the treatment of acute viral illnesses is an established therapy that has previously shown benefit in the treatment of SARS, MERS, and Ebola virus patients [37]. Our patient’s clinical conditions partially improved. Therefore, we think that it may be an efficient therapy, but probably complete benefit is reached when given early in the course of severe or life-threatening disease [38] and changes in immune response in pregnant women may influence complete response. Anyway, our case confirms the safety of convalescent plasma treatment in pregnant patients, as already described by a limited number of other papers [5, 39]. We observed that severe maternal respiratory disease is improved by delivery. Indeed, increased oxygen consumption and reduced functional residual capacity, which are normal in pregnancy, may facilitate maternal deterioration in patients with pneumonia [40]. So, delivery should be considered as a component of the management of refractory hypoxemic respiratory failure or worsening critical illness in pregnant women, based on multidisciplinary discussion with anesthetist, obstetricians and pediatricians to balance risk and benefit for maternal and fetal status. We also confirmed that lung ultrasound examination is an accurate imaging method to detect pulmonary and pleural conditions useful especially to monitor pregnant women who require serial exams because it is a radiation free examination [41, 42]. Some studies report newborn infections and placental infections, so precautions during delivery were necessary to prevent the rare but possible vertical transmission [43, 44].

CONCLUSIONS

In the future, other studies on larger numbers of pregnant women with COVID-19 need to be conducted to better understand the correct maternal and fetus care and the efficacy of several therapies.

COMPLIANCE WITH ETHICAL STANDARDS

Authors contribution
A pregnant woman with COVID19 successfully treated with convalescent plasma

Funding
None.

Study registration
N/A.

Disclosure of interests
The authors declare that they have no conflict of interests.

Ethical approval
N/A.

Informed consent
Obtained.

Data sharing
Data are available under reasonable request to the corresponding author.

REFERENCES

A pregnant woman with COVID19 successfully treated with convalescent plasma

34. Organization WH. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected” interim guidance 27 May 2020.

